working memory

Working memory, expertise & retrieval structures

In a 1987 experiment (1), readers were presented with a text that included one or other of these sentences:

After doing a few warm-up exercises, John put on his sweatshirt and began jogging.


After doing a few warm-up exercises, John took off his sweatshirt and began jogging.

Both texts went on to say: John jogged halfway around the lake.

After reading the text, readers were asked if the word sweatshirt had appeared in the story. Now here is the fascinating and highly significant result: those who read that John had put on a sweatshirt responded “yes” more quickly than those who had read that he had taken off his sweatshirt.

Why is this so significant? Because it tells us something important about the reading process, at least in the minds of skilled readers. They construct mental models. If it was just a matter of the mechanical lower-order processing of letters and words, why would there be a difference in responses? Neither text was odd — John could as well have put on a sweatshirt before going out for a jog as taken it off — so there shouldn’t be a surprise effect. So what is it? Why is the word sweatshirt not as tightly / strongly linked in the second case as it is in the first? If they were purely textbase links (links generated by the textbase itself), the links should be equivalent. The difference in responses implies that the readers are making links with something outside the textbase, with a mental model.

Mental models, or as they are sometimes called in this context, situation models, are sometimes represented as lists of propositions, but in most cases it seems likely that they are actually analogue in nature. Thus the real world should be better represented by the situation model than by the text. Moreover, a spatial situation model will be similar in many ways to an image, with all the advantages that that entails.

All of this has relevance to two very important concepts: working memory and expertise.

Now, I’m always talking about working memory. This time I want to discuss not so much the limited attentional capacity that is what we chiefly mean by working memory, but another, more theoretical concept: the idea of long-term working memory.

Think about reading. To make sense of the text you need to remember what’s gone before — this is why working memory is so important for the reading process. But we know how limited working memory is; it can only hold a very small amount — is it really possible to hold all the information we need to make sense of what we’re reading? Shouldn’t there be constant delays as we access needed information from long-term memory? But there aren’t.

It’s suggested that the answer lies in the use of long-term working memory, a retrieval structure that keeps a network of linked propositions readily available.

Think about when you are studying / reading a difficult text in a subject you know well. Compare this to studying a difficult text in a subject you don’t know well. In the latter case, you may have to painfully backtrack, checking earlier statements, trying to remember what was said before, trying to relate what you are reading to things you already know. In the former case, you seem to have a vastly expanded amount of readily accessible relevant information, from the text itself and from your long-term memory.

The connection between long-term working memory and expertise is obvious. And expertise has already been conceptualised in terms of retrieval structures (see for example my article on expertise). In other words, you can increase your working memory in a particular domain by developing expertise, and the shortest route to developing expertise is to concentrate on building effective retrieval structures.

One of the areas where this is particularly crucial is that of reading scientific texts. Now we all know that scientific texts are much harder to process than, for example, stories. And there are several reasons for that. One is the issue of language: any science has its own technical vocabulary and you won't get far without knowing it. But another reason, far less obvious to the untutored, concerns the differences in structure — what may be termed differences of genre.

Now it might seem self-evident that stories are far simpler than science, than any non-fiction texts, and indeed a major distinction is usually made between narrative texts and expository texts, but it’s rather like the issue of faces and other objects. Are we specially good at faces because we're 'designed' to be (i.e., we have special 'expert' modules for processing faces)? Or is it simply that we have an awful lot of practice at it, because we are programmed to focus on human faces almost as soon as we are born?

In the same way, we are programmed for stories: right from infancy, we are told stories, we pay attention to stories, we enjoy stories. Stories have a particular structure (and within the broad structure, a set of sub-structures), and we have a lot of practice in that structure. Expository texts, on the other hand, don't get nearly the same level of practice, to the extent that many college students do not know how to handle them — and more importantly, don't even realize that that is what they're missing: a retrieval structure for the type of text they're studying.


Glenberg, A.M., Meyer, M. & Lindem, K. 1987. Mental models contribute to foregrounding during text comprehension. Journal of Memory and Language, 26, 69-83.

tags memworks: 

tags study: 

tags strategies: 

A defense of working memory training

There’s been a certain amount of criticism of working memory training recently. Scott Barry Kaufman in the Scientific American has put out an excellent article critiquing the criticism. Among his points (most of which I have previously made), he notes:

These nuanced effects suggest that personal characteristics should be taken into account when considering the effectiveness of cognitive training. …

Next, it’s important to consider that working memory training is most helpful for those who need it the most. …

[Nevertheless] The evidence suggests that the activities that show the strongest and most widespread effects on cognitive functioning are those that target the “whole person,” ...

Cook rightly notes that the effects of the large majority of working memory training programs don’t generalize well beyond the specific skills that are targeted. ...

It’s also important to keep in mind that regardless of the method, working memory improvements are transient. Repeated practice and challenge is essential to maintaining improvements in any kind of cognitive training or else they’ll very likely decline rapidly. ...

Read the full article

tags memworks: 

Decision-making, working memory, and age

In October I reported on a study that found older adults did better than younger adults on a decision-making task that reflected real-world situations more closely than most tasks used in such studies. It was concluded that, while (as previous research has shown) younger adults may do better on simple decision-making tasks, older adults have the edge when it comes to more complex scenarios. Unsurprisingly, this is where experience tells.


Mikels, J.A., Löckenhoff, C.E., Maglio, S.J., Carstensen, L.L., Goldstein, M.K. & Garber, A. 2010. Following your heart or your head: Focusing on emotions versus information differentially influences the decisions of younger and older adults. Journal of Experimental Psychology: Applied, 16(1), 87-95.

tags memworks: 

tags strategies: 

tags problems: 

Practice counts! So does talent

The thing to remember about Ericsson’s famous expertise research, showing us the vital importance of deliberate practice in making an expert, is that it was challenging the long-dominant view that natural-born talent is all-important. But Gladwell’s popularizing of Ericsson’s “10,000 hours” overstates the case, and of course people are only too keen to believe that any height is achievable if you just work hard enough.

The much more believable story is that, yes, practice is vital — a great deal of the right sort of practice — but we can’t disavow “natural” abilities entirely.


Campitelli, G., & Gobet F. (2011).  Deliberate Practice. Current Directions in Psychological Science. 20(5), 280 - 285.

Campitelli, G., & Gobet, F. (2008). The role of practice in chess: A longitudinal study. Learning and Individual Differences, 18, 446–458.

Gobet, F., & Campitelli, G. (2007). The role of domain-specific practice, handedness and starting age in chess. Developmental Psychology, 43, 159–172.

Hambrick, D. Z., & Meinz, E. J. (2011). Limits on the Predictive Power of Domain-Specific Experience and Knowledge in Skilled Performance. Current Directions in Psychological Science, 20(5), 275 –279. doi:10.1177/0963721411422061

Hambrick, D.Z., & Engle, R.W. (2002). Effects of domain knowledge, working memory capacity and age on cognitive performance: An investigation of the knowledge-is-power hypothesis. Cognitive Psychology, 44, 339–387.

Hambrick, D.Z., Libarkin, J.C., Petcovic, H.L., Baker, K.M., Elkins, J., Callahan, C., et al. (2011). A test of the circumvention-of-limits hypothesis in geological bedrock mapping. Journal of Experimental Psychology: General, Published online Oct 17, 2011.

Hambrick, D.Z., & Oswald, F.L. (2005). Does domain knowledge moderate involvement of working memory capacity in higher level cognition? A test of three models. Journal of Memory and Language, 52, 377–397.

Meinz, E. J., & Hambrick, D. Z. (2010). Deliberate Practice Is Necessary but Not Sufficient to Explain Individual Differences in Piano Sight-Reading Skill. Psychological Science, 21(7), 914–919. doi:10.1177/0956797610373933


tags strategies: 

tags memworks: 

Achieving flow

I’ve recently had a couple of thoughts about flow — that mental state when you lose all sense of time and whatever you’re doing (work, sport, art, whatever) seems to flow with almost magical ease. I’ve mentioned flow a couple of times more or less in passing, but today I want to have a deeper look, because learning (and perhaps especially that rewiring I was talking about in my last post) is most easily achieved if we can achieve "flow" (also known as being ‘in the zone’).

Let’s start with some background.

tags strategies: 

tags memworks: 

Why good readers might have reading comprehension difficulties and how to deal with them

The limitations of working memory have implications for all of us. The challenges that come from having a low working memory capacity are not only relevant for particular individuals, but also for almost all of us at some points of our lives. Because working memory capacity has a natural cycle — in childhood it grows with age; in old age it begins to shrink. So the problems that come with a low working memory capacity, and strategies for dealing with it, are ones that all of us need to be aware of.


Press release on the first study:; see also

Second study: Banas, S., & Sanchez, C. a. (2012). Working Memory Capacity and Learning Underlying Conceptual Relationships Across Multiple Documents. Applied Cognitive Psychology, n/a-n/a. doi:10.1002/acp.2834

tags memworks: 

tags study: 

tags problems: 

tags strategies: 

Event boundaries and working memory capacity

In a recent news report, I talked about how walking through doorways creates event boundaries, requiring us to update our awareness of current events and making information about the previous location less available. I commented that we should be aware of the consequences of event boundaries for our memory, and how these contextual factors are important elements of our filing system. I want to talk a bit more about that.


Culham, J. 2001. The brain as film director. Trends in Cognitive Sciences, 5 (9), 376-377.

Kurby, C. a, & Zacks, J. M. (2008). Segmentation in the perception and memory of events. Trends in cognitive sciences, 12(2), 72-9. doi:10.1016/j.tics.2007.11.004

Speer, N. K., Zacks, J. M., & Reynolds, J. R. (2007). Human Brain Activity Time-Locked to Narrative Event Boundaries. Psychological Science, 18(5), 449–455. doi:10.1111/j.1467-9280.2007.01920.x

tags strategies: 

tags memworks: 

Why it’s important to work out the specific skills you want to improve

I have spoken before, here on the website and in my books, about the importance of setting specific goals and articulating your specific needs. Improving your memory is not a single task, because memory is not a single thing. And as I have discussed when talking about the benefits of ‘brain games’ and ‘brain training’, which are so popular now, there is only a little evidence that we can achieve general across-the-board improvement in our cognitive abilities.

tags strategies: 

tags memworks: 

How working memory works: What you need to know

A New Yorker cartoon has a man telling his glum wife, “Of course I care about how you imagined I thought you perceived I wanted you to feel.” There are a number of reasons you might find that funny, but the point here is that it is very difficult to follow all the layers. This is a sentence in which mental attributions are made to the 6th level, and this is just about impossible for us to follow without writing it down and/or breaking it down into chunks.


Clapp, W. C., Rubens, M. T., Sabharwal, J., & Gazzaley, A. (2011). Deficit in switching between functional brain networks underlies the impact of multitasking on working memory in older adults. Proceedings of the National Academy of Sciences. doi:10.1073/pnas.1015297108

Ecker, U. K. H., Lewandowsky, S., Oberauer, Klaus, & Chee, A. E. H. (2010). The Components of Working Memory Updating : An Experimental Decomposition and Individual Differences. Cognition, 36(1), 170 -189. doi: 10.1037/a0017891.

Fukuda, K., & Vogel, E. K. (2011). Individual Differences in Recovery Time From Attentional Capture. Psychological Science, 22(3), 361 -368. doi:10.1177/0956797611398493

Jonides, J., Lewis, R. L., Nee, D. E., Lustig, C. a, Berman, M. G., & Moore, K. S. (2008). The mind and brain of short-term memory. Annual review of psychology, 59, 193-224. doi: 10.1146/annurev.psych.59.103006.093615.

Kinderman, P., Dunbar, R.I.M. & Bentall, R.P. (1998).Theory-of-mind deficits and causal attributions. British Journal of Psychology 89: 191-204.

Lange, E. B., & Verhaeghen, P. (in press). No age differences in complex memory search: Older adults search as efficiently as younger adults. Psychology and Aging.

Oberauer, K, Sus, H., Schulze, R., Wilhelm, O., & Wittmann, W. (2000). Working memory capacity — facets of a cognitive ability construct. Personality and Individual Differences, 29(6), 1017-1045. doi: 10.1016/S0191-8869(99)00251-2.

Oberauer, K. (2005). Control of the Contents of Working Memory--A Comparison of Two Paradigms and Two Age Groups. Journal of Experimental Psychology: Learning, Memory, and Cognition, 31(4), 714-728. doi:10.1037/0278-7393.31.4.714

Oberauer, Klaus. (2006). Is the Focus of Attention in Working Memory Expanded Through Practice ? Cognition, 32(2), 197-214. doi: 10.1037/0278-7393.32.2.197.

Oberauer, Klaus. (2009). Design for a Working Memory. Psychology of Learning and Motivation, 51, 45-100.

Verhaeghen, P., Cerella, J. & Basak, C. (2004) A Working Memory Workout : How to Expand the Focus of Serial Attention From One to Four Items in 10 Hours or Less. Cognition, 30 (6), 1322-1337.

tags memworks: 

tags study: 

tags strategies: 


Subscribe to working memory