Skip to main content

Articles

Learning a new language is made considerably more difficult if that language is written in an unfamiliar script. For some, indeed, that proves too massive a hurdle, and they give up the attempt.

Let's look a little deeper into the value of mnemonics for knowledge acquisition. By “knowledge acquisition”, I mean the sort of information you learn from textbooks — information that is not personal, that you need for the long-term.

In this context, I believe the chief value of mnemonic strategies is to help you recall information that needs to be remembered in a particular order. Thus we use mnemonics to help us remember the order of the planets, the order of musical notes on the stave, the order of the colors in a rainbow.

Many people, particularly as they get older, have concerns about short-term memory problems: going to another room to do something and then forgetting why you’re there; deciding to do something, becoming distracted by another task, and then forgetting the original intention; uncertainty about whether you have just performed a routine task; forgetting things you’ve said or done seconds after having said or done them; thinking of something you want to say during a conversation, then forgetting what it was by the time it’s your turn to speak, and so on.

In the last part I talked about retrieval structures and their role in understanding what you’re reading. As promised, this month I’m going to focus on understanding scientific text in particular, and how it differs from narrative text.

At the same time as a group of French parents and teachers have called for a two-week boycott of homework (despite the fact that homework is officially banned in French primary schools), and just after the British government scrapped homework guidelines, a large long-running British study came out in support of homework.

In a 1987 experiment (1), readers were presented with a text that included one or other of these sentences:

or

Both texts went on to say:

When we are presented with new information, we try and connect it to information we already hold. This is automatic. Sometimes the information fits in easily; other times the fit is more difficult — perhaps because some of our old information is wrong, or perhaps because we lack some of the knowledge we need to fit them together.

Research with children has demonstrated that the ability to learn new words is greatly affected by working memory span - specifically, by how much information they can hold in that part of working memory called "phonological short-term memory". The constraining effect of working memory capacity on the ability to learn new words appears to continue into adolescence.

While parents and teachers have always strongly supported small class sizes, their belief has not always been supported by evidence. Part of the problem lies in that word “small” — what constitutes a small class? Different interventions have looked at reducing class sizes from 40 to 30, or 30 to 25. It may well be that such reductions are not sufficient to show clear benefits.

Humans are the animals that manipulate their cognitive environment.