Skip to main content

Articles

The evidence that diet, physical exercise, and mental stimulation all help prevent age-related cognitive decline and reduce the risk of mild cognitive impairment and Alzheimer’s, is now very convincing.

Studies of mice and (rather intriguingly) beagles, have provided evidence that ‘enriched’ environments — ones that provide opportunities for regular exercise and mental stimulation — reduce or prevent age-related cognitive decline, and reduce the risk of Alzheimer’s.

What is it?

Frontotemporal dementia is a disorder of the frontal lobes and includes what was known as primary progressive aphasia. Although it occurs far less often than Alzheimer's disease, among dementia sufferers younger than 65 it is estimated to occur at about the same rate. In other words, frontotemporal dementia is, unlike the most common dementias, not a disorder of age. Most sufferers become symptomatic in their 50s and 60s.

Prevalence

Vascular dementia, as its name suggests, is caused by poor blood flow, produced by a single, localized stroke, or series of strokes.

It is the second most common dementia, accounting for perhaps 17% of dementias. It also co-occurs with Alzheimer's in 25-45% of cases. Although there are other types of dementia that also co-occur with Alzheimer's, mixed dementia generally refers to the co-occurrence of Alzheimer's and vascular dementia.

Let's look a little deeper into the value of mnemonics for knowledge acquisition. By “knowledge acquisition”, I mean the sort of information you learn from textbooks — information that is not personal, that you need for the long-term.

In this context, I believe the chief value of mnemonic strategies is to help you recall information that needs to be remembered in a particular order. Thus we use mnemonics to help us remember the order of the planets, the order of musical notes on the stave, the order of the colors in a rainbow.

Humans have a long tradition of holding genes responsible for individual differences in behavior (of course, we called it "blood", then, or "family"). In the 20th century, a counter-belief arose: that it was all down to environment, to upbringing. In more recent decades, we have become increasingly aware of how tightly and complexly genes and environment are entwined.

"I'm terrible at remembering names"

"I'm great with names, but I'm hopeless at remembering what I've read."

"I always remember what people tell me about themselves, but I'm always forgetting birthdays and anniversaries."

There is no such thing as a poor memory!

There will be memory domains that you are less skilled at dealing with.

Information comes in different packages

Think about the different types of information you have stored in your memory:

I was recently asked for advice in the case of increased “brain blocks” — failures to retrieve information that should be readily accessible. This question is, I suspect, of interest to many of my readers, so I thought I would answer it here.

There are many possible causes for an increase in this type of memory failure. These causes fall into three main categories: physical, environmental, and strategic. Let’s deal with the physical first.

In a recent news report, I talked about how walking through doorways creates event boundaries, requiring us to update our awareness of current events and making information about the previous location less available. I commented that we should be aware of the consequences of event boundaries for our memory, and how these contextual factors are important elements of our filing system. I want to talk a bit more about that.

I’ve always been interested in the body’s clocks — and one of the most interesting things is that it is clocks, in the plural. It appears the main clock is located in a part of the brain structure called the hypothalamus (a very important structure in the brain, although not one of much importance to learning and memory). The part of the hypothalamus that regulates time is called the suprachiasmatic nuclei. These cells contain genes that switch on, off, and on again over a 24-hour period, and send electrical pulses and hormones through the body. This is the body’s master clock.

Transfer refers to the ability to extend (transfer) learning from one situation to another. For example, knowing how to play the piano doesn’t (I assume) help you play the tuba, but presumably is a great help if you decide to take up the harpsichord or organ. Similarly, I’ve found my knowledge of Latin and French a great help in learning Spanish, but no help at all in learning Japanese.