Skip to main content

Articles

Back in 2010, I read a charming article in the New York Times about a bunch of neuroscientists bravely disentangling themselves from their technology (email, cellphones, laptops, …) and going into the wilderness (rafting down the San Juan River) in order to get a better understanding of how heavy use of digital technology might change the way we think, and whether we can reverse the problem by immersing ourselves in nature.

In a recent news report, I talked about a study of older adults that found that their sense of control over their lives fluctuates significantly over the course of a day, and that this impacts on their cognitive abilities, including reasoning and memory.

Planning memory contains your plans and goals (such as, “I must pick up the dry-cleaning today”; “I intend to finish this project within three months”). Forgetting an appointment or a promise is one of the memory problems people get most upset about.

I have spoken before, here on the website and in my books, about the importance of setting specific goals and articulating your specific needs. Improving your memory is not a single task, because memory is not a single thing. And as I have discussed when talking about the benefits of ‘brain games’ and ‘brain training’, which are so popular now, there is only a little evidence that we can achieve general across-the-board improvement in our cognitive abilities.

"Consolidation" is a term that is bandied about a lot in recent memory research. Here's my take on what it means.

Becoming a memory

Initially, information is thought to be encoded as patterns of neural activity — cells "talking" to each other. Later, the information is coded in more persistent molecular or structural formats (e.g., the formation of new synapses). It has been assumed that once this occurs, the memory is "fixed" — a permanent, unchanging, representation.

Prevalence of Parkinson's Disease

After Alzheimer's disease, the second most common neurodegenerative disorder is Parkinson’s disease. In the U.S., at least 500,000 are believed to have Parkinson’s, and about 50,000 new cases are diagnosed every year1 (I have seen other estimates of 1 million and 1.5 million — and researchers saying the numbers are consistently over-estimated while others that they are consistently under-estimated!). In the U.K., the numbers are 120,000 and 10,0002.

Most people believe that an adult learner can't hope to replicate the fluency of someone who learned another language in childhood. And certainly there is research to support this. However, people tend to confuse these findings - that the age of acquisition affects your representation of grammar - with the idea that children can learn words vastly quicker than adults. This is not true. Adults have a number of advantages over children:

While parents and teachers have always strongly supported small class sizes, their belief has not always been supported by evidence. Part of the problem lies in that word “small” — what constitutes a small class? Different interventions have looked at reducing class sizes from 40 to 30, or 30 to 25. It may well be that such reductions are not sufficient to show clear benefits.

Learning a new language is made considerably more difficult if that language is written in an unfamiliar script. For some, indeed, that proves too massive a hurdle, and they give up the attempt.

Most cognitive processes decline with age

It does appear that most component processes of cognition decline with advanced age if the difficulty level is sufficiently high. For example, the following processes have all shown age effects: