Skip to main content

Articles

I have previously reported on how gait and balance problems have been associated with white matter lesions, and walking speed and grip strength have been associated with dementia and stroke risk.

Prevalence

Vascular dementia, as its name suggests, is caused by poor blood flow, produced by a single, localized stroke, or series of strokes.

It is the second most common dementia, accounting for perhaps 17% of dementias. It also co-occurs with Alzheimer's in 25-45% of cases. Although there are other types of dementia that also co-occur with Alzheimer's, mixed dementia generally refers to the co-occurrence of Alzheimer's and vascular dementia.

The mediotemporal lobe (MTL) is a concept rather than a defined brain structure. It includes the hippocampus, the amygdala, and the entorhinal and perirhinal cortices - all structures within the medial area of the temporal lobe.The temporal lobe is in general primarily concerned with sensory experience - specifically, with hearing, and with the integration of information from multiple senses. Part of the temporal lobe also plays a role in memory processing. It is situated below the frontal and parietal lobes, and above the hindbrain.

I’ve recently had a couple of thoughts about flow — that mental state when you lose all sense of time and whatever you’re doing (work, sport, art, whatever) seems to flow with almost magical ease. I’ve mentioned flow a couple of times more or less in passing, but today I want to have a deeper look, because learning (and perhaps especially that rewiring I was talking about in my last post) is most easily achieved if we can achieve "flow" (also known as being ‘in the zone’).

Let’s start with some background.

Many people, particularly as they get older, have concerns about short-term memory problems: going to another room to do something and then forgetting why you’re there; deciding to do something, becoming distracted by another task, and then forgetting the original intention; uncertainty about whether you have just performed a routine task; forgetting things you’ve said or done seconds after having said or done them; thinking of something you want to say during a conversation, then forgetting what it was by the time it’s your turn to speak, and so on.

The Proto-Indo-European language (PIE) is the ultimate ancestor of many European and Indian languages. The word "proto" indicates it was spoken thousands of years in the past and we have no direct record of it. What we do have is the clear evidence in its descendant languages, from the consistent patterns in the way their words vary, that there was such an ancestor. Following these patterns, scholars have deduced a quite extensive vocabulary — but they are still reconstructed, not ‘real’ words. We can never know exactly how these words were pronounced, or precisely how they were used.

There are two well-established strategies for remembering people’s names. The simplest basically involves paying attention. Most of the time our memory for someone’s name fails because we never created an effective memory code for it.

An easy strategy for improving your memory for names

We can dramatically improve our memory for names simply by:

Difficulty in remembering people’s names is one of the most common memory tasks that people wish to be better at. And the reason for this is not that their memory is poor, but because it is so embarrassing when their memory lets them down.

This isn’t just an issue at a personal level. It’s a particular issue for anyone who has to deal with a lot of people, many of whom they will see at infrequent intervals. Nothing makes a person — a client, a customer, a student — feel more valued than being remembered.

Children’s understanding, and their use of memory and learning strategies, is a considerably more complex situation than most of us realize. To get some feeling for this complexity, let’s start by looking at a specific area of knowledge: mathematics.

Children's math understanding

Here’s a math problem:

Pete has 3 apples. Ann also has some apples. Pete and Ann have 9 apples altogether. How many apples does Ann have?

This seems pretty straightforward, right? How about this one: